

DOI: 10.3969/j.issn.1004-4949.2025.14.031

浓缩生长因子联合正畸治疗对牙周炎患者骨吸收及美容效果的影响

吴瑶1,2

(1. 江西卫生职业学院口腔系, 江西 南昌 330052;

2. 南昌江卫口腔门诊部, 江西 南昌 330052)

[摘 要]目的 分析浓缩生长因子(CGF)联合正畸治疗对牙周炎患者骨吸收及美容效果的影响。方法 选取2021年4月-2022年6月南昌江卫口腔门诊部收治80例牙周炎患者作为研究对象,采用随机数字表法将其分为参照组与干预组,各40例。参照组采用正畸治疗,干预组采用CGF联合正畸治疗,比较两组边缘骨吸收标志物含量、炎性因子水平、改良出血指数(mSBI)和改良菌斑帽数(mPLI)及微笑美学指标。结果 干预组RANKL水平低于参照组,OPG与Wnt3a水平高于参照组(P<0.05);干预组治疗后3、6个月的mSBI与mPLI评分均低于参照组(P<0.05);干预组治疗后6个月的微笑曲线与牙龈暴露量均小于参照组(P<0.05)。结论 CGF联合正畸治疗在牙周炎患者中的效果良好,能够有效改善边缘骨吸收标志物含量与炎性因子水平,减轻牙龈出血及菌斑,提高牙齿美观性,促进牙周健康。

[关键词] 牙周炎; 正畸治疗; 浓缩生长因子; 炎性因子

[中图分类号] R783

[文献标识码] A

【文章编号】 1004-4949 (2025) 14-0125-04

Effect of Concentrated Growth Factor Combined with Orthodontic Treatment on Bone Resorption and Aesthetic Effect in Patients with Periodontitis WU Yao^{1,2}

(1.Department of Stomatology, Jiangxi Health Vocational College, Nanchang 330052, Jiangxi, China;

2. Nanchang Jiangwei Dental Clinic, Nanchang 330052, Jiangxi, China)

[Abstract]Objective To analyze the effect of concentrated growth factor (CGF) combined with orthodontic treatment on bone resorption and aesthetic effect in patients with periodontitis. **Methods** A total of 80 patients with periodontitis admitted to Nanchang Jiangwei Dental Chinic from April 2021 to June 2022 were selected as the research subjects, and they were divided into the reference group and the intervention group by the random number table method, with 40 patients in each group. The reference group was given orthodontic treatment, and the intervention group was given CGF combined with orthodontic treatment. The marginal bone resorption marker concentrations, inflammatory factor levels, modified Sulcus Bleeding Index (mSBI), modified Plaque Index (mPLI) and smile aesthetics indicators were compared between the two groups. **Results** The level of RANKL in the intervention group was lower than that in the reference group, and the levels of OPG and Wnt3a were higher than those in the reference group (P<0.05). The levels of E-selectin, ICAM-1 and HMGB1 in the intervention group were lower than those in the reference group (P<0.05). The scores of mSBI and mPLI the intervention group at 3 and 6 months after treatment were lower than those in the reference group (P<0.05). The smile curve and gingival exposure of the intervention group at 6 months after treatment were less than those in the reference group (P<0.05). **Conclusion** CGF combined with orthodontic treatment has a good effect in patients with periodontitis. It can effectively reduce marginal bone resorption marker concentrations and inflammatory factor levels,

基金项目: 江西省教育厅科学技术研究项目(编号: GJJ2208216)

第一作者: 吴瑶(1987.12-), 女, 江西南昌人, 硕士, 讲师, 主要从事口腔医学正畸方向的相关研究

alleviate gingival bleeding and plaque accumulation, improve dental aesthetics and promote periodontal health.

[Key words] Periodontitis; Orthodontic treatment; Concentrated growth factor; Inflammatory factor

牙周炎 (periodontitis) 是导致成年人失牙 的主要原因, 其发病原因多与机体菌斑和微生物 含量的增加有关,菌斑及其代谢产物通过破坏牙 龈微生态平衡,引发局部炎症反应并激活破骨细 胞活性,从而导致牙槽骨吸收,进而对患者牙周 组织的健康生长及全身健康构成危害[1,2]。正畸 治疗能帮助患者纠正倾斜移位牙齿,改善牙齿咬 合关系,进而促进牙周健康[3]。但仅开展正畸治 疗会出现牙齿移动,加重牙周组织损伤,正畸 治疗的矫治器也易导致菌斑积聚而增加炎症风 险。而在正畸治疗基础上联合开展浓缩生长因子 (concentrated growth factor, CGF) 治疗有利于局部 细胞增殖及血管生成,进一步改善牙周炎患者的 病情恢复[4]。基于此,本研究旨在探讨CGF联合正 畸治疗对牙周炎患者骨吸收及美容效果的影响, 现报道如下。

1 资料与方法

1.1 一般资料 选取南昌江卫口腔门诊部2021年4月-2022年6月收治的80例牙周炎患者作为研究对象,采用随机数字表法将其分为参照组与干预组,各40例。参照组男23例、女17例;年龄25~70岁,平均年龄(51.31±4.15)岁。干预组男28例,女12例;年龄26~68岁,平均年龄(51.37±2.64)岁。两组性别、年龄比较,差异无统计学意义(P>0.05),研究可比。本研究患者均知情同意并签署知情同意书。

1.2 纳入与排除标准 纳入标准:患者资料完整; 牙周探查可知釉牙骨质界根方存在牙周袋形成,或附着丧失。排除标准:存在药物过敏史、血液系统疾病、恶性肿瘤、严重心脏病;处于妊娠或哺乳期;合并其他口腔疾病;近期使用非甾体抗炎药/抗生素;中途退出者。

1.3 方法

1.3.1参照组 行牙周基础治疗后予以正畸治疗: ①术前进行全面牙周检查,包括牙齿松动度、牙龈出血指数和牙周袋深度的测量,同时拍摄个别牙齿牙片及全景片,详细记录检查结果;②行龈上洁治、龈下刮治、根面整平术、局部用药及牙周袋冲洗等牙周基础治疗,待牙周基础治疗完成 后6个月实施正畸治疗;③在正畸治疗前通过X线检查评估牙槽骨稳定性,要求垂直吸收不超过根长1/3,水平吸收≤50%,牙周探针深度≤3 mm,出血指数BI≤2,菌斑控制率≥85%;达标后,制定正畸方案,采用直丝弓矫治器,初始使用0.014~0.016英寸镍钛丝,后牙松动者采用4~6颗牙结扎固定,用细镍钛丝排齐牙齿;8~12周后更换0.016~0.018英寸不锈钢丝调整前牙,每牙施加15~25 g力,不超过30 g,链状橡皮圈施加50~100 g力,每月牙齿移动≤1 mm,直至间隙关闭。治疗期间密切监控牙周状况,定期复查并持续进行牙周维护治疗。

1.3.2干预组 予以CGF联合正畸治疗:①制备CGF 微粒,抽取患者外周血10~40 ml,经3000 r/min 离心12 min分层后,分离凝胶并切割成1~2 mm微粒,与Bio-Oss骨粉1:1混合;②行Widman翻瓣术,清理骨缺损区,完成根面平整及骨修整后,将上述复合材料覆盖于缺损区,覆盖胶原膜并缝合龈瓣;③伤口愈合后,根据牙周炎程度制定正畸治疗计划,轻度牙周炎预计疗程6~12个月,中、重度牙周炎预计疗程12~24个月,具体治疗方案参照对照组标准执行。

1.4 观察指标

1.4.1检测两组边缘骨吸收标志物含量 于正畸治疗结束后1周,经酶联免疫吸附法检测RANKL、OPG、Wnt3a边缘骨吸收标志物含量。

1.4.2检测两组炎性因子水平 于正畸治疗结束后1周,经酶联免疫吸附法检测E-selectin、ICAM-1及HMGB1炎性因子水平。

1.4.3评估两组mSBI和mPLI 分别在治疗后3、6个月评估mSBI和mPLI。mSBI: 使用探针探查 牙龈缘出血情况,结合出血程度与范围分值评 定为0~3分,评分越高则提示出血情况越严重^[5]; mPLI: 使用碱性品红(2%)染色受检牙齿后评估菌斑分布情况,结合牙龈各处菌斑分布程度设定分值为0~3分,评分越高表示菌斑越严重^[6]。

1.4.4测量两组微笑美学指标 包括微笑曲线和牙龈 暴露量。微笑曲线: 经标准微笑照片使用图像分析,采取Photoshop软件建立前牙切缘连线(L1)和下唇轮廓曲线(L2),计算两者垂直距离及角

度偏差。牙龈暴露量:采用0.01 mm精度游标卡尺,在标准光照条件下测量牙龈缘在颊侧中点、近中点和远中点三个位点相对于上前牙切缘的垂直距离。

1.5 统计学方法 采用SPSS 22.0统计学软件进行数据分析,计数资料采用[n(%)]表示,行 χ ²检验;计量资料用($\bar{x} \pm s$)表示,行t检验,以P<0.05表示差异有统计学意义。

2 结果

2.1 两组边缘骨吸收标志物含量比较 干预组

RANKL水平低于参照组,OPG与Wnt3a水平高于 参照组(P<0.05),见表1。

2.2 两组炎性因子水平比较 干预组E-selectin、ICAM-1、HMGB1水平均低于参照组(P<0.05),见表2。

2.3 两组mSBI与mPLI比较 干预组治疗后3、6个月的mSBI与mPLI评分均低于参照组(P<0.05),见表3。

2.4 两组微笑美学指标比较 干预组治疗后6个月的微笑曲线与牙龈暴露量均小于参照组(P<0.05),见表4。

表 1 两组边缘骨吸收标志物含量比较($\bar{\chi}\pm s$, $\mu \chi L$)

组别	n	RANKL	OPG	Wnt3a
参照组	40	5.74 ± 0.31	175.46 ± 14.68	1.88 ± 0.46
干预组	40	2.17 ± 0.12	238.85 ± 22.75	3.25 ± 0.22
t		67.923	14.807	16.993
P		0.001	0.001	0.001

表 2 两组炎性因子水平比较($\bar{\chi} \pm_S$,pg/ml)

			<u> </u>	
组别	n	E-selectin	ICAM-1	HMGB1
参照组	40	253.62 ± 20.83	305.65 ± 30.18	164.37 ± 28.64
干预组	40	105.83 ± 13.35	134.47 ± 13.59	76.55 ± 4.47
t		37.780	32.709	19.161
P		0.001	0.001	0.001

表 3 两组 mSBI 与 mPLI 比较 (x ± s, 分)

组别		mS	mSBI		mPLI	
	n	治疗后3个月	治疗后6个月	治疗后 3 个月	治疗后6个月	
参照组	40	0.81 ± 0.05	0.75 ± 0.01	0.89 ± 0.09	0.67 ± 0.03	
干预组	40	0.68 ± 0.06	0.58 ± 0.02	0.64 ± 0.02	0.49 ± 0.04	
t		10.527	48.083	17.150	22.768	
P		0.001	0.001	0.001	0.001	

表 4 两组微笑美学指标比较($\bar{x}\pm s$, mm)

组别	n	微笑	微笑曲线		牙龈暴露量	
		治疗前	治疗后6个月	治疗前	治疗后6个月	
参照组	40	5.18 ± 0.88	4.11 ± 0.64	4.89 ± 1.09	2.71 ± 0.44	
干预组	40	4.96 ± 0.79	2.41 ± 0.52	4.73 ± 1.12	1.61 ± 0.43	
t		1.177	13.038	0.647	11.308	
P		0.243	0.001	0.519	0.001	

3 讨论

牙周炎是慢性感染病,其临床特征包括牙龈炎症、牙周袋形成及牙槽骨渐进性吸收,疾病晚期常伴随牙齿松动脱落及脓液形成^[7]。目前临床常规治疗方案采用牙周基础治疗联合正畸治疗干预,虽该方案能改善牙齿排列状态并优化局部口腔环境,但无法消除炎症,特别是面对严重骨缺损病例时,其治疗效果难以达到预期。而在正畸治疗基础上联合应用CGF可提升治疗效果,不仅能有效促进牙周组织再生修复,还能降低牙龈退缩发生率,同时增强牙龈乳头的结构稳定性^[8]。

本研究结果表明,干预组RANKL水平低于参 照组, OPG与Wnt3a水平高于参照组 (P < 0.05)。 原因分析为: CGF释放的IGF-1、FGF抑制NF-κB 通路活性,减少RANKL生成,同时激活PI3K/AKT 通路促进间充质干细胞分泌OPG, 形成对RANKL 的竞争性抑制^[9]。另外,β-catenin核转位效率的上 调能增强Wnt3a介导的成骨分化,而上述多靶点调 控网络能抑制骨吸收,此时RANKL下降能促进骨形 成,同时OPG与Wnt3a升高,进而改善牙周炎患者 骨改建失衡[10]。干预组E-selectin、ICAM-1、HMGB1 水平均低于参照组 (P < 0.05)。原因分析: CCF通 过促进组织再生有效减轻正畸机械力引发的炎症反 应,其形成的三维纤维蛋白网络可吸附HMCB1, 限制促炎因子的扩散[11]。此外,CGF调控RANKL通 路抑制破骨细胞活性,减少牙槽骨吸收,协同抗炎 促组织再生,为牙周炎患者的正畸治疗创造有利的 生物学条件[12, 13]。干预组治疗后3、6个月的mSBI 与mPLI评分均低于参照组(P<0.05)。这是因为 CGF联合正畸治疗可抑制牙周炎患者牙槽骨吸收 程度,有效控制局部牙周炎性反应,很大程度抑 制菌斑生长与扩散,维持口腔微循环稳定,促进 牙周健康[14]。干预组治疗后6个月的微笑曲线与牙 龈暴露量均小于参照组(P < 0.05),这是因为 在CGF中含有的PDGF、VEGF能促进牙周组织再 生,改善牙龈边缘形态。正畸治疗的机械力,通 过牙周膜传导刺激牙槽骨改建,进而优化牙齿排 列状态和切缘位置[15]。这些生物活性因子介导的组 织再生与正畸力学协同,改善牙龈生理轮廓,优化 牙列三维排列, 实现功能与美学双重治疗效果。

综上所述, CGF联合正畸治疗牙周炎患者的效果良好,可改善边缘骨吸收标志物含量与炎性 因子水平,减轻牙龈出血及菌斑,提高牙齿美观性,促进牙周健康。

[参考文献]

- [1]李洁,王倩,赵中华,等.牙周炎正畸患者的龈沟液HMGB1、sICAM-1、IL-33、TSLP水平变化以及与牙周指标的关联性分析[J].中国美容医学,2024,33(6):132-136.
- [2]王洁,王飞,顾玲娟,等.氯己定含漱液辅助正畸压低治疗对 牙周炎患者炎症水平及心理状态的影响[J].中国医药导报,2024,21(12):103-106,123.
- [3]玛衣努尔·艾赛提,马依热·阿布都赛麦提,热孜亚·艾尼,等·浓缩自体生长因子对牙周组织再生术用于重度牙周炎患者疗效,牙龈厚度和免疫因子水平影响分析[J].现代生物医学进展,2024,24(12):2288-2292.
- [4]陈刚,莫丽飞,张晓静.正畸牙周联合治疗对伴错合畸形牙周炎患者牙周致病菌及牙周组织炎症因子表达的影响[J].河北医学,2023,29(1):131-136.
- [5]王林,李媛媛,季楠.骨皮质切开木对牙周炎致错位前牙行牙周-正畸患者牙根吸收的影响[J].川北医学院学报,2023,38(10):1383-1386.
- [6]刘皓,胡鑫浓焦剑,等正畸伸长重度牙周炎患牙引导牙槽骨增量初探[J]。中华口腔医学杂志,2023,58(10):1019-1026.
- [7]朱乐强,赵晓瑞,史锦坤.康复新液辅助正畸压低治疗对牙周炎患者龈沟液MMP-2、TIMP-2水平及预后的影响[J].检验医学与临床,2023,20(1):103-106.
- [8]谷芳,谷荣.减数正畸联合牙周系统治疗对重度牙周炎错颌畸形患者牙周相关指标及牙槽骨高度的影响[J].川北医学院学报,2023,38(3):382-385.
- [9]王安琪,汪涌.三种比例CGF与异种骨Bio-Oss联合应用于 重度牙周炎位点保存的疗效评价[J].临床口腔医学杂 志,2023,39(10):606-610.
- [10]陈雨, 笪海芹, 陈莹, 等. 浓缩生长因子联合微创外科技术治疗牙周炎垂直骨缺损的效果评价[J]. 中国实用口腔科杂志. 2022.15(3):325-329.
- [11]肖莉, 笪海芹, 郭凤芹. 意向性再植结合浓缩生长因子在重度 牙周炎的临床疗效[J]. 安徽医学, 2024, 45(12):1553-1557.
- [12]夏婷婷,汪涌.重度牙周炎后牙位点保存术中联合应用浓缩 生长因子的疗效评价[J].上海口腔医学,2023,32(6):650-655.
- [13]谢妮娜,魏路明,袁长永,等.浓缩生长因子和血凝块作为支架在牙髓再生术中的疗效比较研究[J].口腔医学,2024,44(9):678-684.
- [14]罗亮,蔡扬,刘珀羽,等.重度牙周炎患者拔牙后使用CGF 复合Bio-Oss骨胶原对牙槽骨的影响[J].贵州医科大学学 报.2023,48(7):819-825.
- [15]李芷萱,冯立新,徐颖,等.不同自体血小板浓缩物在重度 牙周炎拔牙后位点保存中的应用[J].口腔颌面修复学杂志,2022,23(3):190-195.

收稿日期: 2025-6-24 编辑: 周思雨